Moment-based boundary conditions for lattice Boltzmann magnetohydrodynamics

نویسنده

  • Paul J. Dellar
چکیده

We present a moment-based approach for implementing boundary conditions in a lattice Boltzmann formulation of magnetohydrodynamics. Hydrodynamic quantities are represented using a discrete set of distribution functions that evolve according to a cut-down form of Boltzmann’s equation from continuum kinetic theory. Electromagnetic quantities are represented using a set of vector-valued distribution functions. The nonlinear partial differential equations of magnetohydrodynamics are thus replaced by two constant-coefficient hyperbolic systems in which all nonlinearities are confined to algebraic source terms. Further discretising these systems in space and time leads to efficient and readily parallelisable algorithms. However, the widely used bounce-back boundary conditions place no-slip boundaries approximately half-way between grid points, with the precise position being a function of the viscosity and resistivity. Like most lattice Boltzmann boundary conditions, bounce-back is inspired by a discrete analogue of the diffuse and specular reflecting boundary conditions from continuum kinetic theory. Our alternative approach using moments imposes no-slip boundary conditions precisely at grid points, as demonstrated using simulations of Hartmann flow between two parallel planes. Published 2013 as pages 83–90 of Numerical Mathematics and Advanced Applications 2011, Proceedings of ENUMATH 2011, the 9th European Conference on Numerical Mathematics and Advanced Applications, Leicester, September 2011, edited by A. Cangiani, R. L. Davidchack, E.Georgoulis, A. N. Gorban, J. Levesley & M.V. Tretyakov. DOI: 10.1007/978-3-642-33134-3_9 c ⃝ Springer-Verlag Berlin Heidelberg 2013

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Investigation on Instability of Rayleigh-Benard Convection Using Lattice Boltzmann Method with a Modified Boundary Condition

In this study, the effects of Prandtl number on the primary and secondary instability of the Rayleigh-Benard convection problem has been investigated using the lattice Boltzmann method. Two different cases as Pr=5.8 and 0.7 representing the fluid in liquid and gas conditions are examined. A body forces scheme of the lattice Boltzmann method was presented. Two types of boundary conditions in the...

متن کامل

Implementation of D3Q19 Lattice Boltzmann Method with a Curved Wall Boundary Condition for Simulation of Practical Flow Problems

In this paper, implementation of an extended form of a no-slip wall boundary condition is presented for the three-dimensional (3-D) lattice Boltzmann method (LBM) for solving the incompressible fluid flows with complex geometries. The boundary condition is based on the off-lattice scheme with a polynomial interpolation which is used to reconstruct the curved or irregular wall boundary on the ne...

متن کامل

A Comparative Solution of Natural Convection in an Open Cavity using Different Boundary Conditions via Lattice Boltzmann Method

A Lattice Boltzmann method is applied to demonstrate the comparison results of simulating natural convection in an open end cavity using different hydrodynamic and thermal boundary conditions. The Prandtl number in the present simulation is 0.71, Rayleigh numbers are 104,105 and 106 and viscosities are selected 0.02 and 0.05. On-Grid bounce-back method with first-order accuracy and non-slip met...

متن کامل

A Simplified Curved Boundary Condition in Stationary/Moving Boundaries for the Lattice Boltzmann Method

Lattice Boltzmann method is one of computational fluid dynamic subdivisions. Despite complicated mathematics involved in its background, end simple relations dominate on it; so in comparison to the conventional computational fluid dynamic methods, simpler computer programs are needed. Due to its characteristics for parallel programming, this method is considered efficient for the simulation of ...

متن کامل

Buoyancy Term Evolution in the Multi Relaxation Time Model of Lattice Boltzmann Method with Variable Thermal Conductivity Using a Modified Set of Boundary Conditions

During the last few years, a number of numerical boundary condition schemes have been used to study various aspects of the no-slip wall condition using the lattice Boltzmann method. In this paper, a modified boundary condition method is employed to simulate the no-slip wall condition in the presence of the body force term near the wall. These conditions are based on the idea of the bounce-back ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013